Researchers at EPFL and NCCR MARVEL have developed a novel formulation that describes how heat spreads within crystalline materials. This can explain why and under which conditions heat propagation becomes fluid-like rather than diffusive. Their equations will make it easier to design next-generation electronic devices at the nanoscale, in which these phenomena can become prevalent.
This breakthrough will help engineers design next-generation devices, particularly those that feature materials such as graphite or diamond in which hydrodynamic phenomena are prevalent. Overheating is the main limiting factor for the miniaturization and efficiency of electronic devices, and in order to maximize efficiency and predict whether a device will work.
The paper has been published in Physical Review X. (EPFL)