Quantum physics may be at odds with our classical intuition. This article is a mashup of the paper published in the Proceedings of the National Academy of Science and a related post on SciTechDaily. Good reading!
The celebrated Hong–Ou–Mandel effect is the paradigm of two-particle quantum interference. It has its roots in the symmetry of identical quantum particles, as dictated by the Pauli principle. Two identical bosons impinging on a beam splitter (of transmittance 1/2) cannot be detected in coincidence at both output ports, as confirmed in numerous experiments with light or even matter.
Logically, photons should sometimes be detected on opposite sides of this mirror, which would happen if both are reflected or if both are transmitted. However, the experiment has shown that this never actually happens: the two photons always end up on the same side of the mirror, as though they ‘preferred’ sticking together!
In this paper, two scientists at Université Libre de Bruxelles, Belgium, describe how they identified another way in which photons manifest their tendency to stay together. Instead of a semi-transparent mirror, the researchers used an optical amplifier, called an active component because it produces new photons. They were able to demonstrate the existence of an effect similar to the Hong-Ou-Mandel effect, but which in this case captures a new form of quantum interference.
Quantum physics tells us that the Hong-Ou-Mandel effect is a consequence of the interference phenomenon, coupled with the fact that both photons are absolutely identical. This means it is impossible to distinguish the trajectory in which both photons were reflected off the mirror on the one hand, and the trajectory in which both were transmitted through the mirror on the other hand; it is fundamentally impossible to tell the photons apart. The remarkable consequence of this is that both trajectories cancel each other out! As a result, the two photons are never observed on the two opposite sides of the mirror.
This property of photons is quite elusive: if they were tiny balls, identical in every way, both of these trajectories could very well be observed.
The two researchers have demonstrated that the impossibility to differentiate the photons emitted by an optical amplifier produces an effect that may be even more surprising. Fundamentally, the interference that occurs on a semi-transparent mirror stems from the fact that if we imagine switching the two photons on either sides of the mirror, the resulting configuration is exactly identical. With an optical amplifier, on the other hand, this effect must be understood by looking at photon exchanges not through space, but through time.
When two photons are sent into an optical amplifier, they can simply pass through unaffected. However, an optical amplifier can also produce (or destroy) a pair of twin photons: so another possibility is that both photons are eliminated and a new pair is created. In principle, it should be possible to tell which scenario has occurred based on whether the two photons exiting the optical amplifier are identical to those that were sent in. If it were possible to tell the pairs of photons apart, then the trajectories would be different and there would be no quantum effect.
However, the researchers have found that the fundamental impossibility of telling photons apart in time (in other words, it is impossible to know whether they have been replaced inside the optical amplifier) completely eliminates the possibility itself of observing a pair of photons exiting the amplifier.
This means the researchers have indeed identified a quantum interference phenomenon that occurs through time! (SciTechDaily)